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Abstract

We investigate the ordered arrangements of monodisperse microbub-
bles confined within narrow cylinders. These foams were imaged using
X-ray tomography, allowing the 3D positions of the bubbles of the foam
to be accurately determined. The structure of these foams closely re-
semble the minimum energy configuration of hard spheres in cylindrical
confinement as found in simulations. For larger ratios, λ, of cylinder to
bubble diameter two- and three-layered crystals were formed. Each layer
of these structures is found to be ordered, with each internal layer resem-
bling structures found at lower λ values. The average number of contacts
per bubble is seen to increase with λ.

1 Introduction

Finding the densest packing of hard spheres is an enduring mathematical prob-
lem that finds numerous applications in physics, biology and material sciences.
The recent proof of the Kepler conjecture represents a significant milestone in
understanding the packing of such objects in an unbounded volume[1]. In con-
trast, far less is known about packing within a bounded space, despite the fact
that such problems are ubiquitous throughout science, nature and even daily
life.
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A fascinating example of this type of problem is that of finding the dens-
est packing of equal sized spheres (of diameter d) in a cylinder (of internal
diameter D). Simulations conducted by us (and others) have so far identified
some 40 distinct spiral structures in the range 1< D

d <2.873 - the majority

of which are chiral (with achiral packings arising at particular values of D
d )

[2, 3, 4]. These structures were identified using simulated annealing, a numeri-
cal technique which can find the minimum energy configuration of a system [3].
Previously, we have dubbed these helical structures columnar crystals and given
a theoretical understanding of some of them [3].

Interest in these columnar crystal is driven by the fact that they are chiral
and that the degree of chirality depends directly on the ratio D

d . Consequently,
such structures might find numerous opto-electronic applications, as guides to
understanding helical formations in biology (e.g. tobacco virus, flagella and mi-
crotubules), or as promising pathways to mimic such biological microstructures
[5].

In the range 1< D
d <2.715 one observes monolayer arrangements (in which

all the spheres are in contact with the confining cylinder) while for larger val-
ues of D

d we observe more complex multilayer structures that include internal
spheres (i.e. spheres which are in contact with other spheres but not in con-
tact with the cylinder). Finding dense hard sphere packings for large values of
D
d is a computationally demanding task and as such multilayer arrangements
remain largely unexplored [3]. In this paper we show that micron-sized spheri-
cal bubbles can spontaneously self-assemble into crystalline arrangements inside
capillary tubes, which closely resemble multilayer columnar crystals. We show
that by using this method we are able to gain significant insight into the nature
of high D

d packings.
Using a microfluidic flow-focusing device we generate wet foams comprised of

equal volume bubbles. The bubbles in such foams may be considered spherical

since they reside within the wet region, Hw, defined as Hw =
l20
d where l0 is the

capillary length of the liquid and d is the bubble diameter of the foam [6]1. Such
bubbles have been previously shown to readily assume the minimum-energy
configuration of hard-spheres for a wide variety of boundary conditions imposed
upon them [7]. By introducing the foam into tubes of different diameters we are
able to rapidly generate a variety of helical bubble assemblies. We may classify
such structures by the ratio λ = D

d where d is the equivalent sphere diameter
of the bubbles and D is, again, the diameter of the tube into which the bubbles
are placed.

By means of X-ray tomography we are able to access precise 3D information
for individual bubbles and obtain the coordination numbers. The resulting
foam packings are then compared to the hard-sphere simulations of Pickett and
Mughal [2, 3, 4].

2 Experimental method

Monodisperse foam was produced using a flow-focusing device, capable of pro-
ducing equal-sized bubbles of diameter between 100 µm and 800 µm through

1l0 is defined as l0 =
√

γ
ρg

where γ is the surface tension, ρ is the density and g is

acceleration due to gravity
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the controlled co-flow of liquid and gas [8, 9, 10]. The dispersity of bubble
diameters of such samples is less than 5%, classifying these foams as monodis-
perse [11]. In our experiments, we used an aqueous solution composed of 5%
by volume commercial detergent Fairy Liquid in water. We foamed using Ni-
trogen gas into which the low-soluble compound perfluorohexane was dissolved.
This significantly reduces the coarsening rate of the foam, providing the sample
stability required during the imaging of the sample [12].

The bubbles container was fabricated using an Object Eden 3D printer com-
posed of a polymer block (24 mm x 24 mm x 40 mm) in which 26 separate
cylindrical chambers were formed. The cylinders ranged in diameter from 0.8
mm to 3.3 mm in 0.1 mm intervals. Each cylinder was 18 mm in length. This
allows 26 cylindrical packings of different λ values to be imaged at the same
time. By repeating the experiment several times with monodisperse foams of
different bubble diameters, the variety of different λ-values imaged may be again
increased.

The container was placed into a basin of our surfactant solution at the bot-
tom of which was attached a flow-focusing device. The container holding the
bubbles was inverted and tapped to remove trapped air, before being again in-
verted and placed, open face down, over the outlet of the flow-focusing device
which had been previously adjusted to produce bubbles of the desired diameter.
The container was closed by sliding a glass plate over the open bottom face. The
resulting system was then mounted on a polyurethane plinth and allowed to rest
for two hours before being imaged. This resting period was found necessary as
several bubble re-arrangements were seen to occur just after foam formation.
Such movements during the image capture phase would have produced blurring
in the final tomographic reconstructions.

Our tomographic device was composed of a micro-focus 150 kV Hamamatsu
X-ray source with tungsten target. The sample was mounted on a precision
rotation stage from Huber Germany and the sample’s radioscopic projections
recorded using a flat panel detector C7942 aldo from Hamamatsu(120 mm x
120 mm, 2240 x 2368 pixels, pixel size 50 µm). By varying the filament voltage
and current, a 100 kV filament voltage and a 100 µA were found to provide the
best contrast and lowest noise in the reconstructed foam images at high spatial
resolution for our experimental setup.

The tomographic images were reconstructed using the commercially available
software Octopus [13]. The data was then analysed using the software package
MAVI which allowed such information as bubble volume, diameter and position
to be extracted [14]. Visualisation of the samples was also performed using
the ray-tracing software povray which allows for the visual characteristics of
individual bubbles to be adjusted [15]. Such software enabled the simultaneous
processing and visualisation of the data; the bubbles are eventually represented
by spheres of equivalent radius which may then be compared to the results of
simulated annealing.

3 Results and discussion

The reconstruction of one of the samples in Fig.1 shows foams formed in cylin-
ders of diameter 2.9 mm, 3 mm, 3.1 mm, 3.2 mm and 3.3 mm (left to right).
Each bubble on the exterior of the foam sample may be resolved. As the dis-
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tance from the foam-liquid interface increases, the bubbles are seen to become
more polyhedral in nature, due to gravitational drainage reducing the liquid
fraction of the foam [6].

Figure 1: Reconstruction of the raw three-dimensional tomographic data show-
ing the cylindrical ordering of microbubbles. The red boxes indicate regions of
consistent ordering. Above these regions, the bubble ordering is seen to change.
g shows the direction of gravity.

It can also be seen that the structure of the foam changes as the distance
from the foam-liquid interface increases. Specifically, along the vertical axis of
the foam in Fig.1, the ordering of the bubbles is seen to change as the distance
from the foam-liquid interface is increased. The structures at the top of the
foam, far from the foam-liquid interface, have a low liquid fraction and resemble
those structures previously reported by Tobin et. al [16]. In particular, a series
of boundaries is seen to occur. For each crystal, a distinct region of crystalli-
sation near the foam-liquid interface has been highlighted in red allowing the
change in ordering to be easily seen. This transition is due to in the gradient
of liquid fraction along the length of the foam, resulting in the bubbles becom-
ing more deformed as the distance from the foam-liquid interface is increased,
resulting in a change of foam structure. This behaviour may also be thought
of as the effect of the buoyancy force of underlying foam layers which leads to
an increasing compression of the bubbles in the upwards direction. The results
in a reduction in the average separation between bubble centres, creating an
apparent reduction in the ‘effective’ radius of the bubbles within the packing as
a function of height, producing crystalline structures associated with higher D

d
values at increased distances from the foam-liquid interface.

For comparison with the results of simulated annealing, we wish to examine
those wet bubble structures for which the effects of compression are minimal.
For this reason, only those bubbles which resided within the capillary length of
the surfactant solution l0 ≈ 1.8 mm are considered.
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3.1 Visual inspection of foam structures

For low-λ values the resulting foam structures are well described by the pre-
dictions of simulated annealing. Fig.2 shows the comparison between two foam
structures and their hard-sphere counterparts of similar λ values, specifically λ
= 2.22 ± 0.01 and λ = 2.24 ± 0.01. For the structure at λ=2.22, the foam is
composed of pairs of bubbles, each layer of bubbles is rotated along the long
axis of the foam through 90◦ with respect to the layer below. The bubbles of
each second layer of bubbles are not in contact. Such arrangements are also
seen in the hard-sphere simulations. When λ is increased to 2.24, the separa-
tion between every second pair of spheres is reduced so that these spheres now
touch in both simulation and experiment.
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2.1949≤D/d≤2.2247

2.2247≤D/d≤2.2655

Figure 2: Comparison between the hard-sphere structures produced by simu-
lated annealing (left) and a representation of the foam experiments using visual
software povray (right). Note that the same arrangement of spheres is seen in
both simulation and experiment. The spheres from successive layers or shells are
see to touch in both simulation and experiment for λ = 2.22 and are separated
for λ = 2.24. Data for simulated annealing provided by Mughal et. al. [3]

As λ increases the situation is more complicated due to the formation of
two- structures with internal spheres. An accurate determination of the exact
onset of this transition is not possible from these tomographic experiments due
to the inability to continuously measure the structural changes with increasing
λ. However, we see that structures without internal spheres form up to λ = 2.5
while the next successfully imaged structure, at λ = 2.9, shows the emergence
of such spheres. This range of λ values includes λ = 2.73, the value associated
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with the first occurrence of internal spheres in simulation [3].
Several examples of these two-layered structures are shown in Fig.3. Note

that a clear distinction exists between internal and external bubbles. In all cases
the external bubble layer and internal core are composed of ordered arrange-
ments of bubbles. The internal core of these higher λ value structures resembles
structures which appear at lower values of λ. This is clearly seen for λ = 3.4±0.1
and λ = 3.6 ± 0.1 whose internal structures resemble the zig-zag pattern seen
in computational results for 1 < D/d < 1.866 [4]. On increasing λ, the internal
structure again appears to move through a series of structures similar to those
reported for lower λ. In Fig.3 the λ = 4.1 ± 0.1 structure exhibits an internal
core very similar to the simulated structure seen at D/d = 2.215.

Figure 3: Visualisation of experimental foams of (a) λ = 3.1 ± 0.1, (b) λ =
3.4± 0.1, (c) λ = 3.6± 0.1 and (d) λ = 4.1± 0.1 showing (E) the external and
(I) the internal structure.

On further increasing the λ value of the foam structures a third layer of
ordered bubbles occurs, examples of which are seen in Fig.4. Again each layer
appears to be ordered, with each internal layer resembling structures which
appear at lower λ values. In the examples we have shown here, increasing the
λ value of the structures results in the bubbles of the inner core coming closer
together. From the behaviour of doubled-layered structures at lower λ values,
we suspect that further increase in λ may result in the formation of a zig-zag
structure, as seen for the two-layered structures previously discussed.
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λ =4.74±0.01

λ =5.14±0.01

Figure 4: Visualisation of the foam packing structure for λ = 4.74 ± 0.01 and λ
= 5.14 ± 0.01. Successive radially ordered shells of the foam sample are coloured
green, red and blue. Each successive layer of the foam is seen to be ordered

3.2 Variation of average contact number

The contact number distribution contact number distribution of the number of
neighbours of each bubble within the system - was calculated for each experi-
mental cylindrical packing. Two bubbles are considered neighbours if

|~xi − ~xj | ≤ Ri +Rj (1)

where ~xi and ~xj are the centre positions of the ith and jth bubbles within
the system and Ri and Rj are the bubble radii. After excluding those bubbles
in contact with the foam-liquid interface, the variation of the average number
of contacts C with λ was plotted, as shown in Fig.5.
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Figure 5: Variation of the average number of contacts C within the cylindri-
cal foam structures with λ. It is seen that, as λ increases, the system ap-
proaches C = 12, the values associated with maximal contact number in three-
dimensions. A theoretical prediction for the average contact number is shown
in cyan, a fit to the experimental data in green, while the results of simulated
annealing are shown in red (data taken from Mughal et. al. [3]).

The average contact number is seen to increase with λ. This is expected
as, for the minimum λ = 1, the coordination number of the resulting linear
stacking of spheres is 2. As λ→∞, the coordination number will approach 12,
the value associated with the fcc arrangement of spheres. When compared to
the results of simulated annealing (shown in red), the foam has a higher average
coordination number. This is a result of the finite deformability of the bubbles
of the foam allowing them to pack closer together, accessing structures with
a higher average coordination number when compared to simulated annealing.
We can roughly model the behaviour of our data by examining the average
coordination number of spheres within an fcc lattice with a nearest neighbour
separation of a.

A simple examination of the lattice shows that the density of points within
this lattice ρ is given by

ρ =

√
2

a3
. (2)

The density of bonds within this lattice ρB is given as

ρB = 3ρ =
3
√

2

a3
. (3)
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On average, a plane, of angle φ and α with respect to an arbitrary normal
vector ~z, will cut N bonds per unit area where

N =
√

2dρB sin(θ) cos(θ)

=
3

a2
,

where cos θ and sin(θ) are averaged between 0 and π
2 . A cylinder of length

l and diameter D inserted into an fcc lattice will cut Nc bonds given by

Nc =
3πDl

a2
. (4)

The number of bonds within this cylinder is given by

πD2l

4
ρ =

πD2l

2
√

2a3
. (5)

The number of internal contacts of each sphere is then given as

C = 12− number of cut bonds

number of spheres

= 12− 6
√

2
1

λ
.

Our simple model captures the expected behaviour as C → ∞, however
differs from what we see in experiment for lower λ value structures. For these
crystals the effect of the boundary becomes more important, leading to the
divergence from our model. We produced a modified theory which has the
correct coordination number at low λ value - C = 12 − 10

λ . We see that this
curve, while still over-estimating the coordination number, lies closer to the
experimental and theoretical results.

When compared to the results of our foam experiments and simulated an-
nealing, the model over-estimates the number of contacts. This is due to the
model’s assumption that we are cutting through the closest-packed structure -
the FCC lattice. For the case of the confined systems studied, the boundary
will frustrate the formation of this most efficiently packed system, resulting in
a lower coordination number for a given λ value.

4 Conclusions

Our experiments have shown that monodosperse wet foams confined within
cylindrical channels demonstrate many of the ordering characteristics of hard-
sphere column crystals. The same structures occur, at the same points, for both
hard-sphere and foam structure at low λ value. This indicates that the difference
in interactions between bubbles and hard-spheres does not result in a dramatic
change in the structures formed. On increasing λ, beyond the current limits of
simulation, structures composed of bubble shells occur. For such structures, the
innermost shell resembles those structures found at lower λ values.
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When the coordination number of these structures was measured, it was
found that the coordination number increased with λ values in a coherent man-
ner. The simple theory put forward indicates that the coordination number of
columnar crystals increased as λ = 12 − A

λ . When compared to our data, we
found that this functional form fit well with A = 12.5. When comparing theory
to experiment and simulation, we found that both the theory and experiment
over-estimate the coordination number when compared to simulation, the ex-
periment being a closer match. This is a result of the finite compressibility of
the foam resulting in more densely-packed systems. We may conclude that our
foam systems are good in determining the structure of a sphere-packing for a
particular λ value in a quantitative manner - more care must be taken when
trying to compare qualitative measurements directly.

5 Outlook

The current accuracy of our experiments is limited by the small number of
bubbles which resided within the capillary length of the liquid phase. This
limitation may be overcome,however, through the use of bubbles of smaller
diameter. As the bubble diameter is decreased, the bubbles will become less
deformable, appearing more like hard spheres. In addition, as the number of
layers of foams which reside within the capillary length is inversely proportional
to the average bubble diameter of the foam, smaller bubbles will result in better
statistics for our coordination number calculations. However, bubbles far below
the average diameter imaged for this paper, in the range of 100µm, are beyond
the imaging capabilities of our current lab-based X-ray equipment.

In future we would like to extend our current experiment by imaging our
foams at a synchrotron facilities e.g. at the BESSY beamline, where the required
high detector sensitivity is available to image such small bubbles. In this way
we hope to extend the study of these cylindrical crystals beyond the current
limits of simulations, which are currently difficult to extend due to the long
computational times involved.
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